If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2(1 + -1ln(x)) + -4(ln(x) + 1) = 0 Multiply ln * x x2(1 + -1lnx) + -4(ln(x) + 1) = 0 (1 * x2 + -1lnx * x2) + -4(ln(x) + 1) = 0 Reorder the terms: (-1lnx3 + 1x2) + -4(ln(x) + 1) = 0 (-1lnx3 + 1x2) + -4(ln(x) + 1) = 0 Multiply ln * x -1lnx3 + 1x2 + -4(lnx + 1) = 0 Reorder the terms: -1lnx3 + 1x2 + -4(1 + lnx) = 0 -1lnx3 + 1x2 + (1 * -4 + lnx * -4) = 0 -1lnx3 + 1x2 + (-4 + -4lnx) = 0 Reorder the terms: -4 + -4lnx + -1lnx3 + 1x2 = 0 Solving -4 + -4lnx + -1lnx3 + 1x2 = 0 Solving for variable 'l'. Move all terms containing l to the left, all other terms to the right. Add '4' to each side of the equation. -4 + -4lnx + -1lnx3 + 4 + 1x2 = 0 + 4 Reorder the terms: -4 + 4 + -4lnx + -1lnx3 + 1x2 = 0 + 4 Combine like terms: -4 + 4 = 0 0 + -4lnx + -1lnx3 + 1x2 = 0 + 4 -4lnx + -1lnx3 + 1x2 = 0 + 4 Combine like terms: 0 + 4 = 4 -4lnx + -1lnx3 + 1x2 = 4 Add '-1x2' to each side of the equation. -4lnx + -1lnx3 + 1x2 + -1x2 = 4 + -1x2 Combine like terms: 1x2 + -1x2 = 0 -4lnx + -1lnx3 + 0 = 4 + -1x2 -4lnx + -1lnx3 = 4 + -1x2 Reorder the terms: -4 + -4lnx + -1lnx3 + x2 = 4 + -1x2 + -4 + x2 Reorder the terms: -4 + -4lnx + -1lnx3 + x2 = 4 + -4 + -1x2 + x2 Combine like terms: 4 + -4 = 0 -4 + -4lnx + -1lnx3 + x2 = 0 + -1x2 + x2 -4 + -4lnx + -1lnx3 + x2 = -1x2 + x2 Combine like terms: -1x2 + x2 = 0 -4 + -4lnx + -1lnx3 + x2 = 0 The solution to this equation could not be determined.
| 19y+76=32y-28y | | (x+1)x(x-3)+3=0 | | (8x+2).6=6+12x | | x-0.8x=0.2 | | 8x-2.5=x+21.5 | | 6x+3=x+27 | | (x^2+16x+2)(x^2+16x-26)+187=0 | | 27x^3-27x^2+8x-1=0 | | 14=14h | | 2x^2+6.5x=21 | | 9k^2-8k-1=0 | | 100-x=x-25 | | (x-7)(x-7)=(x-9)(x-3) | | 2x^2+2y^2-4x+8y-16=0 | | X^2+4=10X | | Sinx=-5 | | 7x^2-9x-8=0 | | sinx-0.5*(x)=0 | | sin(x)=0.703x | | 4x^4+21x^2-25=0 | | 4x^2+21x^2-25=0 | | n+27=43 | | n+26=44 | | X+2x+5x=72 | | 7+2+x=14 | | 713y-52+214y+32= | | 412y-62+315y+102= | | 2arctg= | | 3t^2-44t+121=0 | | 2tgx=0 | | 4+(4x)+2(x)=72 | | 2y-x=11 |